

The INVIRCAT Project IFR RPAS Control in Airports and TMA

Gunnar Schwoch, DLR RPAS and AI in Aviation, Rome, November 3rd, 2022

© – 2022 – INVIRCAT Consortium. All rights reserved. Licensed to the SESAR 3 Joint Undertaking under conditions.

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 893375. The opinions expressed herein reflect the author's view only. Under no circumstances shall the SESAR Joint Undertaking be responsible for any use that may be made of the information contained herein.

EUROPEAN PARTNERSHIP

Why do we want to integrate RPAS?

different approach speeds

• Different performances lead to

• Different designs lead to different susceptibility to wake turbulence

Challenge: Different RPAS Configurations

Parameter	General Atomics MQ9A	IAI Eitan (Heron TP)	Thales Watch-k eeper WK450	Euro MALE	Boeing 737-800 (opt. piloted)
Cruise Speed	169 kts	-	70 kts	270 kts	455 kts
Max. Speed	260 kts	220 kts	95 kts	-	546 kts
Range	1,900 km	4,700 km	300 km	-	5436 km
Endurance	14 hours	30+ hours	20 hours	-	-
мтоw	4,763 kg	5,400 kg	450 kg	11,000 kg	79,016 kg
Ceiling	FL500	FL460	FL180	FL450	FL410

RPAS and AI in Aviation - The INVIRCAT Project

Challenge: Link Architectures

- Availability of control and communication link
- Required additions to the existing infrastructure

Ground/RLOS via gateway

Challenge: Latency Aspects

- Different levels of latency depending on architecture
- Impact on operations with high latency

Source: Letondal et. al., Flights in my hands [...], 2013

	Remote Pilot Station location	Link	Technology	Estimated expected Latency*
PLOS	In RLOS of	Communication	Radio	290ms
RLUS	airport	Control	Radio	1s
SATCOM	Remote	Communication	SATCOM	700ms
		Control	SATCOM	2s
Ground /	Remote	Communication	Ground	150ms
Gateway		Control	Ground + Radio	1.5s

* In the TMA, Communication: one way latency, Control: round trip latency

Challenge: RPAS Specialties in Operations

Nominal Operations

- Increased work load due to latency
- Reduced situational awareness due to lack of "human senses"
- No use of visual aids for direct control during take-off and landing (to avoid pilot induced oscillation)
- Reduced airspace capacity due to increased separation requirements (e.g., due to RPA performance)

Non-Nominal Operations

Risk of RPAS specific contingencies

3-Nov-2022

INVIRCAT develops a CONOPS to integrate RPAS into the existing ATM environment and infrastructures within the TMA and airports under IFR.

With special focus on

- Impact of latency,
- Automatic Take-off and Landing (ATOL), and
- Handover of RPA control between Remote Pilot **Stations**

INVIRCAT at a Glance

- SESAR Exploratory Research programme
- Duration: 30 months, July 2020 December 2022
- Consortium: 7 partners from 5 EU member states

- 20 Deliverables (10 public)
- 6 Milestones

The INVIRCAT Approach

RPAS Use Cases

		octeristi	cs		of aC	tivities	
Nominal use cases	Non-nominal use cases	Charace		Flo	DW OT C	TWR ATCO	
Taxi operations	(Partial) propulsion failure	Description	This use case considers	#	Phase RPAS	(Ground)	RPIL RPIL requests
Take-off	ATOL occurrences	Actors	TWR ATCO (Ground), TWR ATCO (Runway), RPIL	Ĩ	Identificatio n	(Ground) identifies the RPAS on his/her	taxi instructions.
Departure via SID	C2 link failure	Preconditions	The RPA is located at the apron and in a position from which it can pursue the taxi operation			CWP. He/she recognizes the aircraft to be an	
Arrival via STAR	Transponder failure		The RPAS has received	2	Taxi	TWR ATCO	RPIL reads back
Approach	Radio voice communication failure	Postconditions	permission to line up on the runway.		clearance	clearance for taxi procedure via airport taxiways until holding position short of the runway.	
Holding	Missed Approach*	Assumptions	In addition to the RPAS specific assumptions listed in section 3.3, the RPAS is equipped with a				
Landing	Conflict		Communication with TWR ATCOs might block frequencies longer than manned aircraft due	3	Taxiing		RPIL steers the
	Fuel Starvation	Expected Effects of					RPA manually to the cleared taxi route
		Lucency					

* nominal operation performed after a contingency to recover from non-nominal to nominal operations

Concept of Operations (CONOPS)

Including

- Key assumptions
- ATC Impact
- Interfaces, Links and Latency
- Handover between RPS
- Standard Operational Procedures
- Non-nominal/emergency situations
- Links to U-space

	Investigate IFR RPAS Control in Airports and TMA INVIRCAT	Sesar JOINT UNDERTAKING
	JOINT UND	EXPLORATORY RESEARCH
INVIRO "RPAS" Deliverable ID: Dissemination Level: Dissemination Level: Dissemination coordinator: Call: Topic: Consortium Coordinator: Edition date: Edition tate: Edition	CAT Final CONO in the TMA" D2.4 PU INVIRCAT 893375 H2020-SESAR-2019-2 Control of IFR RPAS in the TMA DR 21 July 2022	PS
	02.00.05	
EUROPEAN PAR	TNERSHIP Co-funded by the European Union	

available at https://www.invircat.eu/

CONOPS - Key Assumptions

RPAS Traffic Class VI

• Describes Operations in EASA's UAS category 'Certified' under Instrument Flight Rules

Requirements

- Ability to meet the set performance requirements in the network, TMA, and airport
- Capability of flying SIDs and STARs
- Ability to meet CNS airspace requirements
- Two-way communication with ATC
- Ability to contact ATC in regard to special conditions
- DAA equipment that is compatible with ACAS systems
- Flight plan including contact details

Source: EUROCONTROL, "RPAS ATM Concept of Operations Edition 4.0," 2017.

CONOPS - Key Assumptions for RPA

- Fixed-wing structure
- Airworthiness & type certificate
- Single C2 link

IAI Heron, Source: dronedj.com

Dornier 228, Source : DLR

The RPA is

- equipped with a system that allows IFR landings without visual aid,
- equipped with an ATOL system, and
- able to conduct taxi operations on its own power.

3-Nov-2022

CONOPS - Key Assumptions for Remote Pilot

The remote pilot must

- be adequately trained and certified,
- refrain from using on-board cameras for flight-critical operations,
- always fly under IFR, and not request, accept or perform any visual procedures,
- always be monitoring the RPA and override automated functions if required.

One remote pilot may only control one RPA at any given time.

- To avoid pilot induced oscillation the RPIL has to **refrain from the use of visual aid** during take-off and landing.
- ATOL systems shall automatically perform operations during take-off, initial climb, approach, landing, and missed approach flight phases
- ATOL is essential in case of C2 link fail
- ATOL helps in case of high C2 link latency

Handover RPS to RPS

- Receiving RPS must be active and available
- C2 link must be compatible
- Reliable voice communication link
- Coordination between the respective RPILs
 - RPA location and status
 - Changes or limitations to the intended flight
 - Changes or limitations to RPA performance
 - Pending or ongoing ATC instructions execution
- Coordination with ATC

Handling of non-nominal situations

- Investigate IFR RPAS Control INVIRCAT INVIRCAT
- Procedures from manned aviation, when possible
- Backup phone in case of voice communication failure
- Loiter areas in case of C2 link failure
- Controlled flight termination as ultima ratio

List of Requirements

Before validation

After validation

95 requirements updated

25 requirements added

Definition of approx. 100 operational and functional requirements

e.g., for ATC

REQ-INVIRCAT-D2.5-0009	The RPIL shall be aware of and declare contingencies to the responsible ATCO when there is a contingency situation.	
REQ-INVIRCAT-D2.5-0010	The RPIL shall command the RPA in contingency situations as agreed with the relevant authorities.	
REQ-INVIRCAT-D2.5-0011	ATCOs shall be aware of which aircraft is remotely piloted.	

e.g., for handover

REQ-INVIRCAT-D2.5-0027	The RPIL in command shall inform the ATCO before the handover procedure is accomplished
REQ-INVIRCAT-D2.5-0028	The RPIL 1 shall brief information to RPIL 2 before handing over the RPA.
REQ-INVIRCAT-D2.5-0029	The RPIL 2 shall confirm the agreement with the briefing information to RPIL 1 before the handover is performed.

Final list of requirements: operational, functional and non-functional (safety, latency, performance) available at <u>https://www.invircat.eu/</u>

Validation Planning

- 18 Validation Objectives
 - 5 Key Performance Areas
 - 4 Success Criteria
 - 3 Achievement Levels

Focus on

- ATOL system
- R/T voice
- Handover between RPS
- C2 link

Validation Architecture

Common architectural design with different simulation components and integration opportunities

- Remote pilot stations
- Controller working positions
- Pseudo-pilot stations
- Traffic simulators

3 real-time simulations to validate the CONOPS and requirements:

- C2 link focus at DLR, Germany
- **R/T voice** and **handover** focus at Royal NLR, The Netherlands
- ATOL focus at CIRA, Italy

ATOL Focused Simulations

Final Approach & Landing (until RPA stops on runway) **Take-Off & Initial climb** (from holding on runway)

2 levels of C2 link latency

Low0,5 s round tripHigh2 s round trip

3 contingencies

ATOL Failure(during take-off/landing)Runway incursion(with RTO or MA/GA)C2 link fail(after FAF)

17 different traffic scenarios

R/T Voice Focused Simulations

R/T loss in all different phases of flight with backup phone Departure (with loitering) Arrival on STAR Arrival in Approach Arrival in Landing

R/T being restored

Departure contingency BRLOS Arrival ... and more

R/T latency depending on architecture 290/700 ms Up to 1750 ms to find the limits

Handover Focused Simulations

Change between Remote Pilot Stations (at INVIR)

Three different procedures:

- 1. Handover during **dedicated loiter manoeuvre** with active ATC involvement (sign-out, sign-in)
- 2. Handover on last SID segment with **active ATC involvement** (sign-out, sign-in)
- 3. Handover on last SID segment without ATC involvement

C2 Link Focused Simulations

C2 link loss for 1-3 RPAS

Using exemplary loiter areas

C2 link restored

Re-integration into arrival stream

High C2 latency Up to 2 seconds

Multiple RPAS in approach Up to 3 RPAS

Validation Results per KPA

Validation Results: Safety

(87% OK - 13% POK)

100

LOW MEDIUM SAFETY HUMAN PERFORMANCE OPERATIONAL EFFICIENCY CAPACITY EQUITY

ACCEPTABILITY <u></u> **C2-LINK AND R/T VOICE ACCEPTABLE LATENCY** £ ∩ ADEQUACY OF INFORMATION PROVISION SAFETY LEVELS <u></u> HUMAN CONTRIBUTION ACCEPTABLE SAFETY LEVELS DURING RPA HANDOVER <u></u> ATOL PROCEDURES ACCEPTABILITY <u>,</u> PHRASEOLOGY ADEQUACY ATCO WORKLOAD **2**

50

Safety in contingencies

- Follow manned IFR procedures where possible
- Additional training demand

Phraseology in contingencies

• Singular negative feedback

<u></u>

21

27

Validation Results: Human Performance

Acceptability in contingencies

- Prototype HMI and Controller Working Position
- Optimize backup communication line

Phraseology in contingencies

 Additional RPAS specific phraseology required

MEDIUM

LOW

3-Nov-2022

Validation Results: Operational Efficiency, Capacity, and Equity

Runway throughput

- Impacted by RPAS performance differences
- Mostly not considered an issue

Selected Findings

- Radar vectoring for RPAS possible
- Contingency procedures should be trained
- ATOL was deemed as essential for RPAS integration in TMA
- Slower RPAS traffic on SIDs and STARs can be challenging
- Slower RPAS speeds respected and separation increased
- Slower RPAS might have more impact at high capacity IFR airports
- R/T latency was not considered to be an issue
- BRLOS should not be the first option in the TMA
- No special callsign ("unmanned") required

Input to final versions of concept, requirements and our recommendations available at https://www.invircat.eu/

Implementation Recommendation

Phase of implementation of each technology per flight phase Step 1 $TRL \ge 5$ $\sim 2022 - 2030$ RPAS3 **IFR & VFR** in Classes A-G 2030+ RPAS2 Step 2 IFR in Classes A-G 2022+ TRL < 5RPAS1 IFR in Classes A-C ~ 2030+ 2019+ RPAS

	Flight phases	Introduction in step 1	Introduction in step 2	
C2 link	Taxi Take-off Departure via SID Arrival via STAR Holding Approach Landing	RLOS	RLOS via gateway ²	
	En-route	SATCOM		
Communication link	Taxi Take-off Departure via SID Arrival via STAR Holding Approach Landing	RLOS	Ground-ground	
	En-route	SATCOM		
ATOL	Take-off Holding Approach Landing	Available for airports with ILS CAT III or GLS GAST c/d	Available for minor airports	

Source: SESAR Joint Undertaking "European ATM Master Plan - Executive View"

Impacts and Effects on KPAs

	Effects on KPAs			
C2 link	C2 link aHigh C2C2 link log			
ATOL	New furAutomatic			
On-boar d	DAA	 Detection and resolution of conflicts when no pilot is on board Automatic conflict resolution in case of contingencies 	SafetyHuman Performance	
technolo	AutoTaxi	New RPAS functionalities that would allow automatic taxiing	Operational	
gies	WheelTug • New support system to the taxiing process		 Capacity Equity	
Handove r	 New ATCO procedure and information Availability of voice communication links during the process New procedure between RPILs Availability of voice and data communication links between the RPSs 			
Commu- nications	Low voidHigh voiLoss of d			

Recommendations

Operational recommendations	Technical recommendations	Regulatory recommendations
Specific procedures, phraseology and training for contingency situations	Identifying element/symbol for RPAS	New ATOL and RPAS propulsion failure related regulations
New procedures so DAA use is correctly understood and integrated	Report C2 link expected latency	Standardization of the handover procedure
Training for AutoTaxi and WheelTug	RPSs available at airports	Harmonization of C2 link failure procedures
The handover procedure is made known to ATC and should be outside the TMA	Compatibility between RPS and RPA during handover	Back-up line in case of communication failure
	Indication on the ATCO HMI for simultaneous handovers of multiple RPAS	Enforcement of acceptable latency limits

More in D4.3 "Final Report: Impacts and Recommendations" at <u>https://www.invircat.eu/</u>

Summary

INVIRCAT **results** and **products** for RPAS integration in the TMA and at airports:

- Concept of Operations
- Requirements
- Impacts on KPAs
- Implementation Strategy
- Recommendations

Validation exercises showed that the **concept is feasible**.

INVIRCAT reached V1 maturity.

Further reading: <u>https://www.invircat.eu/deliverables</u> <u>https://cordis.europa.eu/project/id/893375</u>

THANK YOU FOR YOUR ATTENTION

INVIRCAT Project

Gunnar.Schwoch@dlr.de Paola.Lanzi@dblue.it Since IFR RPAS have higher endurances than conventional manned aircraft, IFR RPAS can be directed towards predefined lotter waypoints during contingencies that do not degrade the flight performance of the RPAS, including C2 lost link and R/T voice communications failures.

RPAS

T ATC UNIT

ATC is responsible for the safe separation of the RPAS with other traffic within controlled airspace and will give clearances to the RPAS. Clearances will start with the predeparture clearance and concern will start with the airport (start-up, push-back, tak), line-up, take-off at the start of the flight and landing and tax) at the end of the flight) and in the air (routes, directions, arriva).

RPAS

AIRPORT

The RPAS is operated by remote pilots from a Ground Control Station (GCS), also known as a Remote Pilot Station (RPS). Interactions with the RPAS are relayed via satellite communications for beyond line of sight operations, or via radio communications when the RPAS is within line of sight

© – 2022 – INVIRCAT Consortium. All rights reserved. Licensed to the SESAR 3 Joint Undertaking under conditions.

EUROPEAN PARTNERSHIP

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 893375. The opinions expressed herein reflect the author's view only. Under no circumstances shall the SESAR Joint Undertaking be responsible for any use that may be made of the information contained herein.

Co-funded by the European Union

What are RPAS at all?

RPAS are unmanned aircraft which are piloted from a remote pilot station and

- expected to be integrated into the air traffic management system equally as manned aircraft
- real-time piloting control is provided by a licensed remote pilot

Impressions

RPAS and AI in Aviation - The INVIRCAT Project

3-Nov-2022

