

SafeOPS

Evaluating an AI-based Decision Support for Go-around Handling

Lukas Beller (Technical University of Munich) RPAS and AI in Aviation 4th November 2022

Co-funded by the European Union

EUROPEAN PARTNERSHIP

Efficieny Resilience Trade-Off

Efficiency Isn't the Only Economic Virtue

It often comes at the expense of resilience, as the new coronavirus is making clear.

Reference: https://www.wsj.com/articles/efficiency-isnt-the-only-economic-virtue-11583873155

Efficiency:

- Optimizing a system/process in a known/defined environment.
- No unused resources

Resilience:

- Ability to absorb, adapt or recover from rare or unpredictable events and disturbances.
- Requires 'reserved capacity' / safety margins

CSIS	CENTER FOR STRATEGIC & INTERNATIONAL STUDIES
COMMENTARY	
Resilienc	e vs. Efficiency

Reference: https://www.csis.org/analysis/resilience-vs-efficiency

Reference:

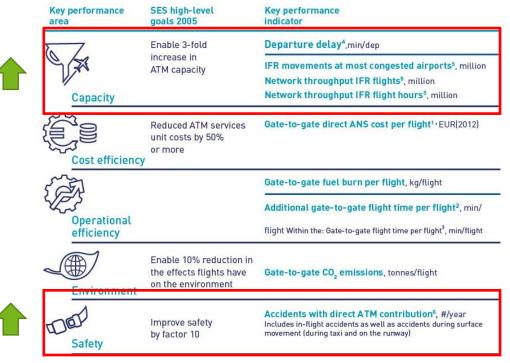
https://upload.wikimedia.org/wikipedia/commons/1/1f/Container_Ship_%2 7Ever_Given%27_stuck_in_the_Suez_Canal%2C_Egypt_-_March_24th%2C_ 2021_%2851070311183%29.jpg

European ATM Master Plan

Goals that are hard to combine?

- Increase of capacity
 - + 60% IFR Network throughput
 - + 5-10% IFR movements at congested airports
- Increase ATM related safety by 100%

What is a good trade-off?


• When should we prioritize safety, when capacity?

Decision Intelligence:

- Use predictive information to support decision-making
- Increase safety and resilience

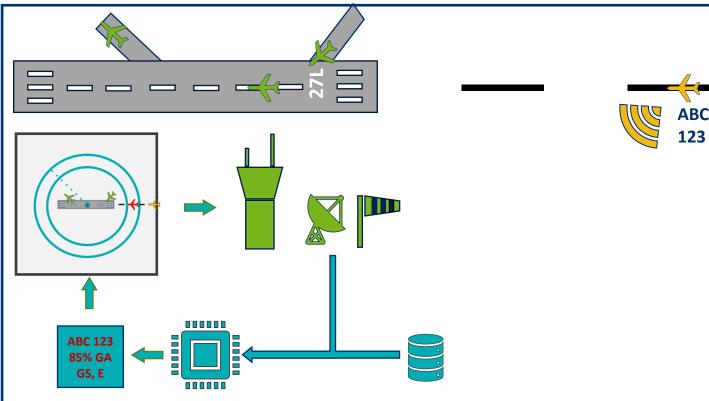
PERFORMANCE AMBITIONS FOR 2035 FOR CONTROLLED AIRSPACE

Reference:

https://www.atmmasterplan.eu/exec/overview/performance-ambitions

SafeOPS Concept

Approach and Departure Handling:


- Tower Controller realizes go-around through
 - Flight Crew's communication
 - Observation of flight (via radar)
- □ Reactive tactics to ensure safety

Predictive Analytics:

- Train an AI/ML model with historical performance and weather data
- Predict go-arounds ahead of time, using radar and weather data

Real Time Risk Information

• Provide the predictive information to ATCOs

How does the predictive information impact decision-making, safety and resilience in the go-around scenario?

03-11-22

4

SafeOPS Structure

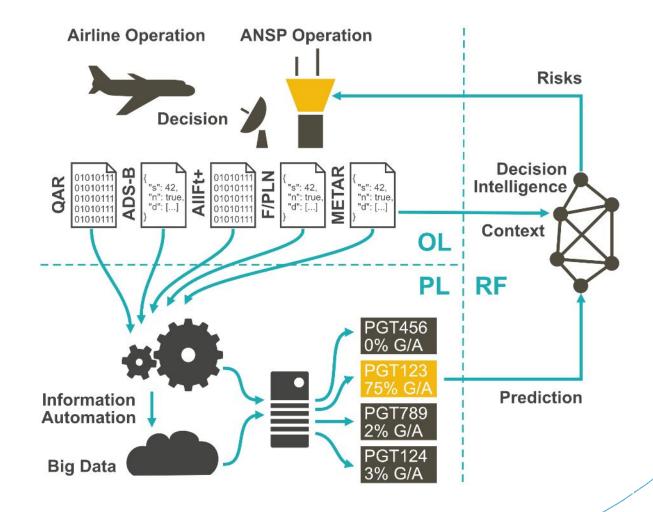
Operational Layer

Systems Engineering approach:

- Understand available procedures and technologies
- Define initial ConOps & requirements
- Evaluate impact of concept on safety and resilience

Risk Framework

Addresses the operational risks of the concept:


- Investigate provision of probabilistic information
- Human Performance/Integration of concept
- Initial safety assessment concept

Predictive Layer

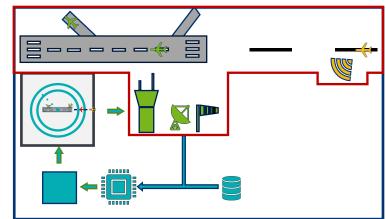
Addresses big data related tasks:

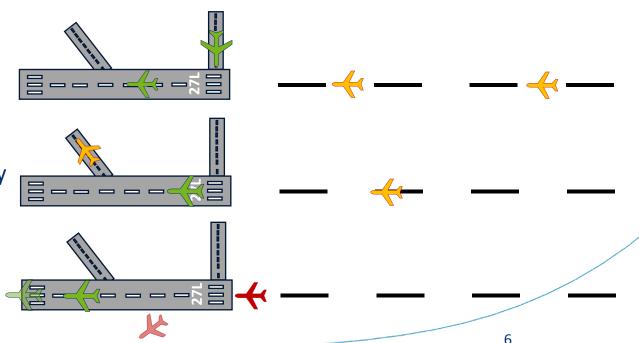
- Data acquisition and pre-processing
- Al solution identification
- Al training

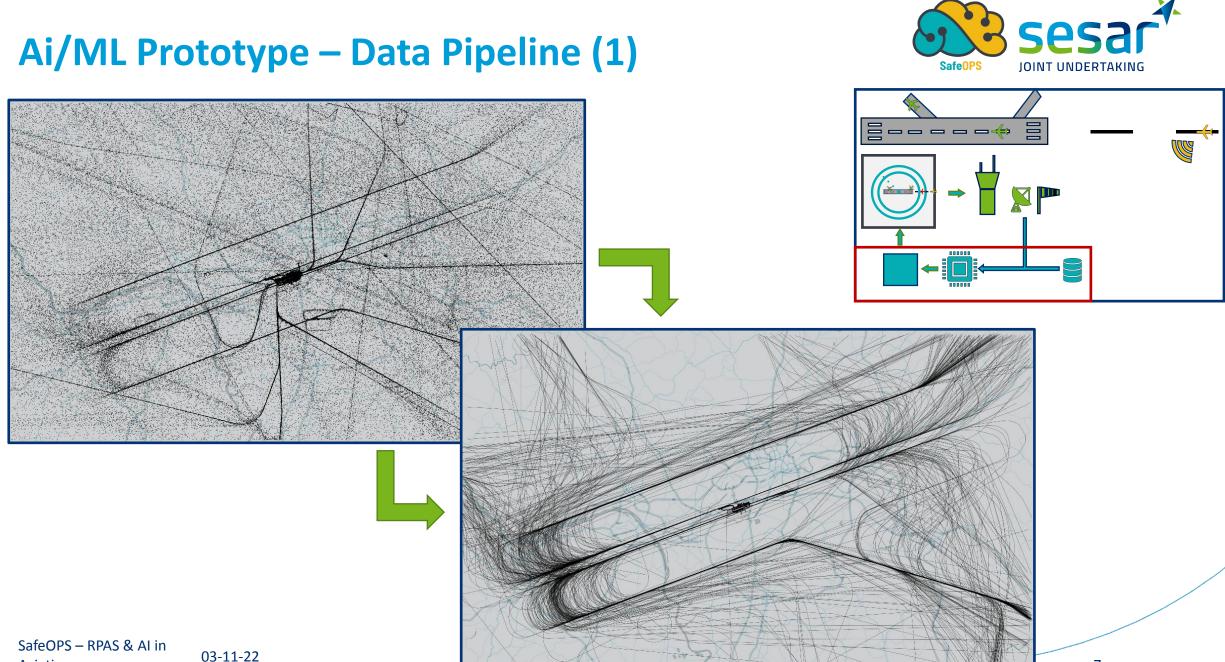
Investigated Scenario

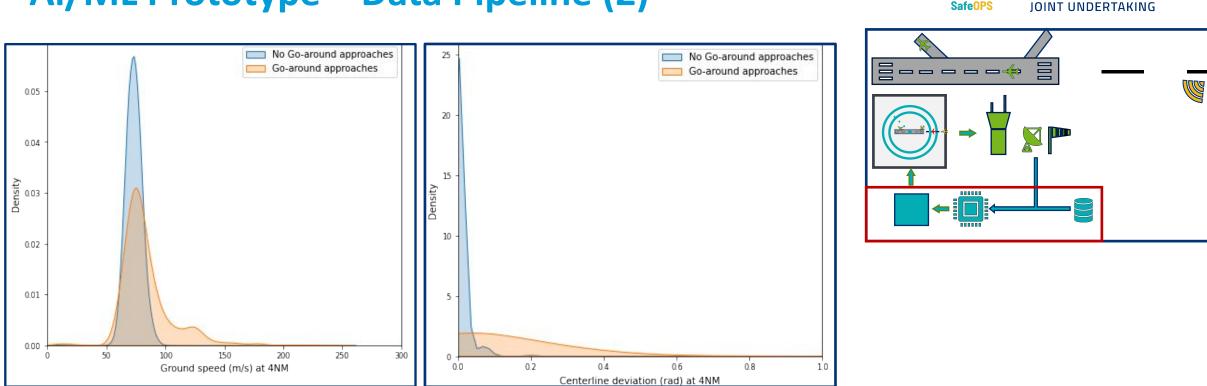
Go-Arounds:

- Go-arounds are standard procedures for ATCOs and Pilots
- On average 3 out of 1000 approaches result in a go-around


<u>Under certain conditions</u>, go-arounds can become complex:


- High congestion
- Conflicting departure and missed approach procedure


Knock-on effects:


- Separation challenges
- Wake turbulence challenges
- High (peak) workload for ATCO and Pilots to ensure safety

Ai/ML Prototype – Data Pipeline (2)

Training Data (D4.1/D4.2)

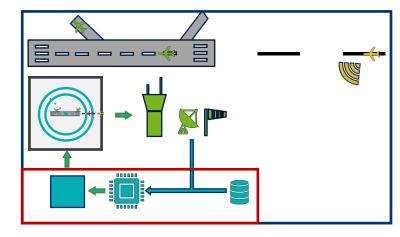
Nr.	Nr.	GA/1000
approaches	Go-arounds	approaches
227044	646	2.85

Ai/ML Prototype - Features

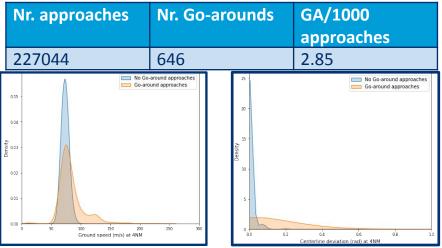
Feature type	Feature name	Feature type	Feature name
Flight information	Callsign	Approach	Runway ID
	ICAO24	performance	Specific energy level
	WTC		Ground speed
	Approach attempt		Vertical speed
			Vertical speed variance
	Hour		Track
	Day		Track variance
	Week		Altitude
Weather data	Wind speed		Track/Runway Bearing deviation
	Wind direction		Centerline deviation
	Temperature		Localizer ddm dev
	Visibility		Glideslope ddm dev
	Approach type	Airport	Total go-arounds
		information	Runway go-arounds
	Dew point temperature		Departures
	Ceiling height		Arrivals
	Cross-wind		Last departure time
	Head/Tail-wind		Last arrival time
			Last departure WTC
			Last arrival WTC
SafeOPS – RPAS & AI in Aviation	03-11-22		Aircraft in front
			Closing time

Join at slido.com #1131280

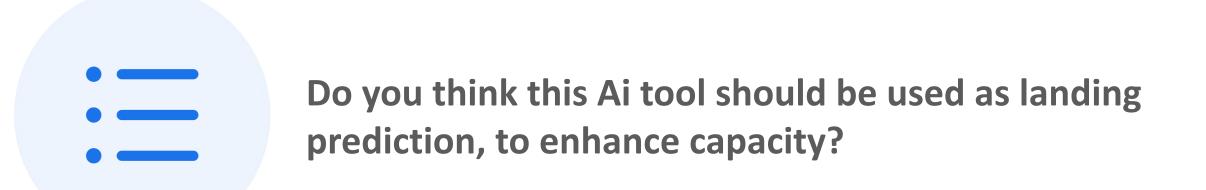
① Start presenting to display the joining instructions on this slide.






Ai/ML Prototype

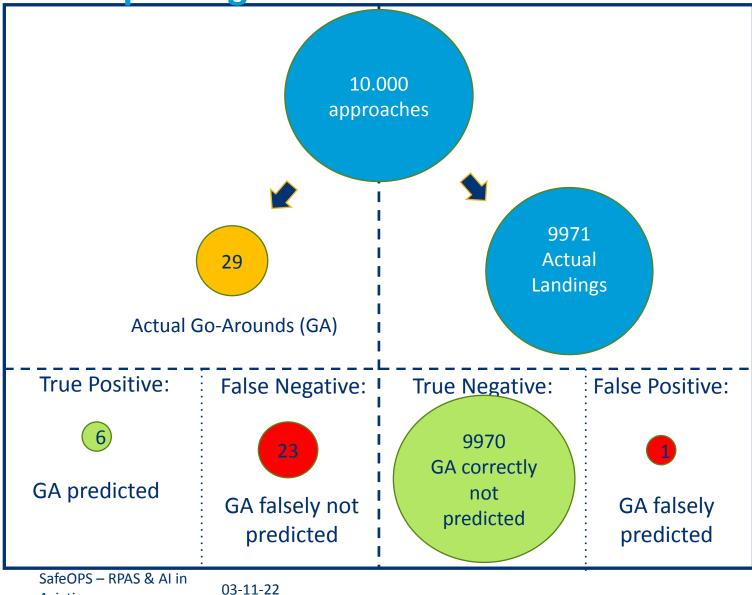
Training Data (D4.1/D4.2)

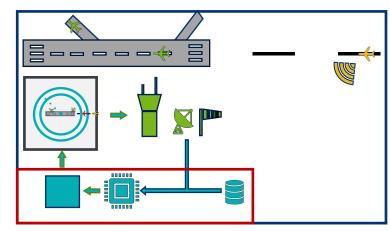

SafeOPS – RPAS & AI in Aviation

03-11-22

ML Results (D4.1/D4.2)

Prediction point	Go-around	Precision	Recall
2NM	True	0.8800	0.3411
	False	0.9981	0.9999
4NM	True	0.8710	0.2093
	False	0.9977	0.9999
6NM	True	0.9091	0.0775
	False	0.9974	0.9999




(i) Start presenting to display the poll results on this slide.

Interpreting Results 4NM

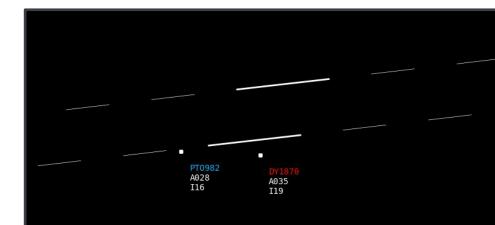
Aviation

ML Results (D4.1/D4.2)

Go-around	Precision	Recall
True	0.8800	0.3411
False	0.9981	0.9999
True	0.8710	0.2093
False	0.9977	0.9999
True	0.9091	0.0775
False	0.9974	0.9999
	True False True False True	True0.8800False0.9981True0.8710False0.9977True0.9091

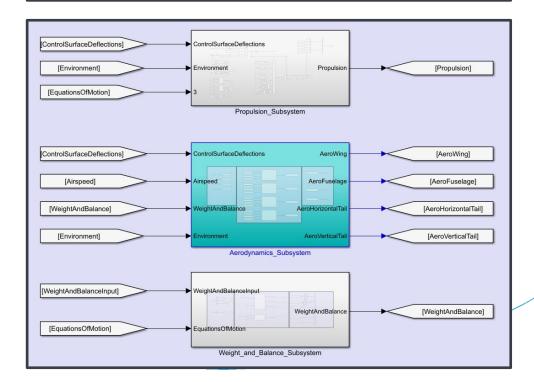
Low Fidelity Simulation Environment

Radar Screen Imitation


- Implemented in Python
- Easy manipulation of colors and information

Approach aircraft model

- Medium type, two-engine aircraft
- Performs approach automatically
- Performs standard missed approach procedure upon command
- Can be controlled according to ATCO's commands


Departure aircraft model

- Variable WTC aircraft
- Automatically flies a Standard Instrument Departure Route
- Can be controlled according to ATCO's command

SafeOPS

JOINT UNDERTAKING

This is an example of the simulation exercises conducted for SafeOPS, where we investigate the effect of go-around forecasts on the approach and go-around handling of Air Traffic Control Officers (ATCOs)

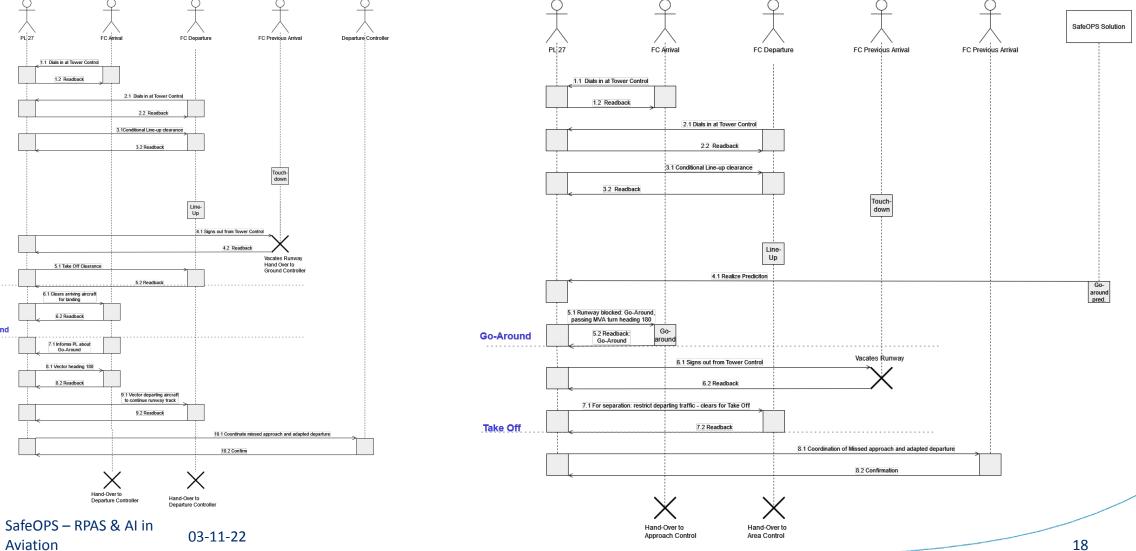
This project has received funding from the SESAR Joint Undertaking (JU) under grant agreement No 892919. The JU receives support from the European Aviation Union's Horizon 2020 research and innovation programme and the SESAR JU members other than the Union

Simulation Output (1)

Sequence of Actions w/o Prediction

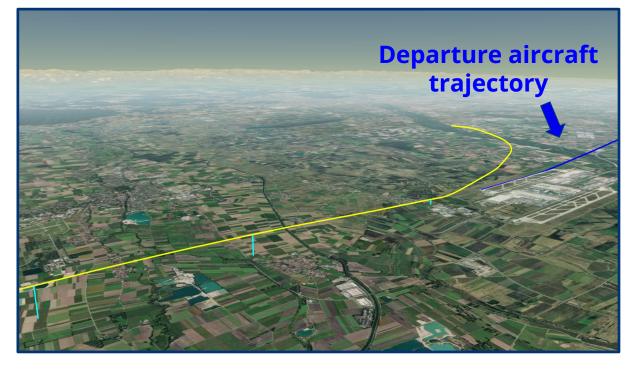
Q

PL 27


Take Off

Go-Around

Aviation


Sequence of Actions with Prediction

Simulation Output (2)

Trajectories of simulated aircraft without prediction

Trajectories of simulated aircraft with prediction

Simulation Metrics

3 (5) Safety Metrics:

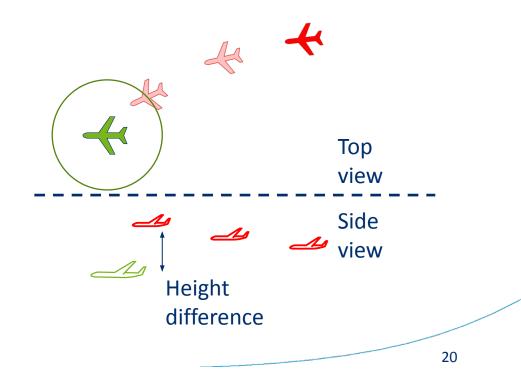
Radar separation:

- Horizontal distance if vertical distance is < 1000ft
- Vertical distance if horizontal distance is < 3NM
- Separation infringement (y/n)

Wake separation:

- Height difference, when in proximity of preceding aircraft
- Wake separation infringement (y/n)

3 Resilience Metrics


Workload
overall coordinative tasks in the scenario
Peak workload
coordinative tasks when both A/C
are airborne

2 Capacity Metrics

- Successful Landing
- Successful Departure

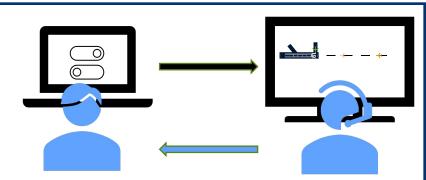
SafeOPS – RPAS & AI in Aviation 03-11-22

Simulation Exercises

True Positive Exercises:

Compare state-of-the-art go-arounds with go-arounds including predictions

False Positive Exercises


Compare false positive go-around prediction with landing scenario

True Negative Exercises

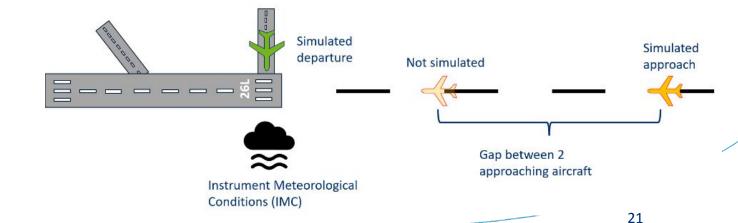
Compare state-of-the-art landings with correctly, not predicted go-around.

False Negative Exercises

Compare state-of-the-art go-arounds with wrongly not predicted go-arounds

Simulation Participants:

- 5 ATCOs •
- 2 Major European Airports •


Simulation Configurations:

Only a few cases investigated:

- Fixed go-around initialization point
- 2 departure AC types
- Fixed approach performance
- No wind

Aviation

Simulation Configuration Example

ID:	Dep.Cfg1					
Airport 2	RWY (take-off)		SID	Gap between approaches		
	26L		S-SID	5NM		
WX	IMC Conditions, no wind, ISA standard					
Aircraft Type	aft Type V1			VR	V2	
Medium twin engine 142 kt		142 kt		142 kt	150 kt	

ID:	App.Cfg.1					
Airport 2	ΙΑΡ		Landing, commande otherwise		MA init from RTH, if not requested from ATCO earlier.	Missed approach predicted at xxNM from RWY Threshold
	ILS 26L		Yes		n.a.	n.a.
WX	IMC Conditions, no wind, ISA standard					
Aircraft Type	VAPP					
Medium twin engine	2	135 kt				

Simulation Exercises

Exercise ID:	Reference Scenarios		Solution Scenario			
	Scenario ID	Departure Configuration	Approach Configuration	Scenario ID	Departure Configuration	Approach Configuration
FP.1	RS.Landing.1	Dep.Cfg.1	App.Cfg.1	SS.FalsePositive.1	Dep.Cfg1	App.Cfg.6
FP.2				SS.FalsePositive.2		App.Cfg7
FP.3				SS.FalsePositive.3		App.Cfg.8
FP.4	RS.Landing.2	Dep.Cfg.2		SS.FalsePositive.4	Dep.Cfg2	App.Cfg.6
FP5				SS.FalsePositive.5		App.Cfg.7
FP.6				SS.FalsePositive.6		App.Cfg.8
TP.1	RS.GoAround.1	Dep.Cfg.1	App.Cfg2	SS.TruePositive.1	Dep.Cfg1	App.Cfg.3
TP.2				SS.TruePositive.2		App.Cfg4
TP.3				SS.TruePositive.3		App.Cfg.5
TP.4	RS.GoAround.2	Dep.Cfg.2		SS.TruePositive.4	Dep.Cfg2	App.Cfg.3
TP.5				SS.TruePositive.5		App.Cfg4
ТР.6				SS.TruePositive.6		App.Cfg.5

Summarizing results

True Positive			False Positive				
Prediction Point	Safety	Resilience	Capacity	Prediction Point	Safety	Resilience	Capacity
2NM	ο	ο	ο	2NM	о	О	ο
4NM	+	+	Ο	4NM	ο	-	-
6NM	+	+	-	6NM	ο	-	-

Conclusion

Simulation Exercise is limited through

- 2 aircraft types
- 1 fixed go-around initialization point

Monte Carlo based simulations needed

- To many variable parameters in the simulation
- Not possible to cover the complete operational context with humans in the loop

Use Case Frequency is relatively low:

- Go-arounds are 'rare'
- Most relevant when conflicting SID and missed approach procedure
- Increase of use cases, in case ATM Master Plan ambitions will be (partially) achieved

Safety Capacity Trade-Off:

- Cost evaluation needed
- □ Define requirements for the minimum acceptable precision

Next Steps

Define the Operational Design Domain:

- Which types of aircraft are covered?
- Which performances are covered (swing overs)?
- Which weather conditions are covered?

Data Quality Requirements:

<u>Objective DM-01¹</u>: The applicant should capture DQR for all data pertaining to the data management process...

Demonstrate real time capabilities:

- Pre-processing
- Feature computation

¹<u>https://www.easa.europa.eu/en/downloads/134357/en</u>

SafeOPS – RPAS & AI in Aviation 03-11-22

DFS Deutsche Flugsicherung

This project has received funding from the SESAR Joint Undertaking (JU) under grant agreement No 892919. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the SESAR JU members other than the Union.