

The SAFELAND project

Joonas Lieb (DLR) & Aurora De Bortoli Vizioli (Deep Blue)

RPAS and AI in aviation
DAY 1 | 03.11.2022
Rome, Italy

Agenda

- SAFELAND Overview
- Final Concept
- Real-time Simulations
- SAFELAND Results
- Discussion and Q&A

SAFELAND Overview 03-11-22

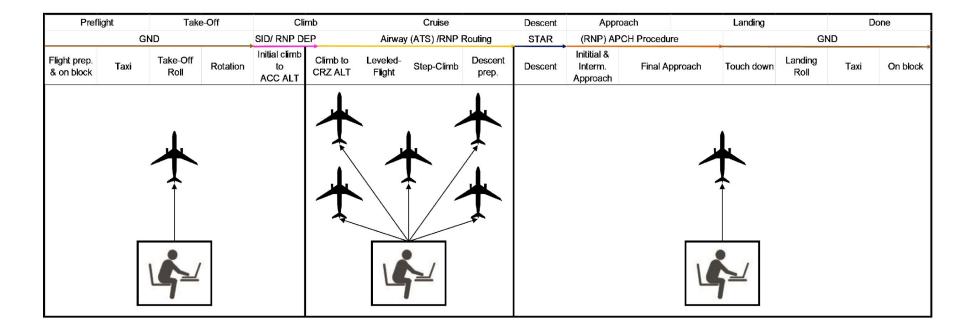
SAFELAND Overview

The Topic (Exploratory Research)

Single pilot operations

The SAFELAND Project contribution

 Enhancing safety in case of single pilot incapacitation, until landing



This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No 890599

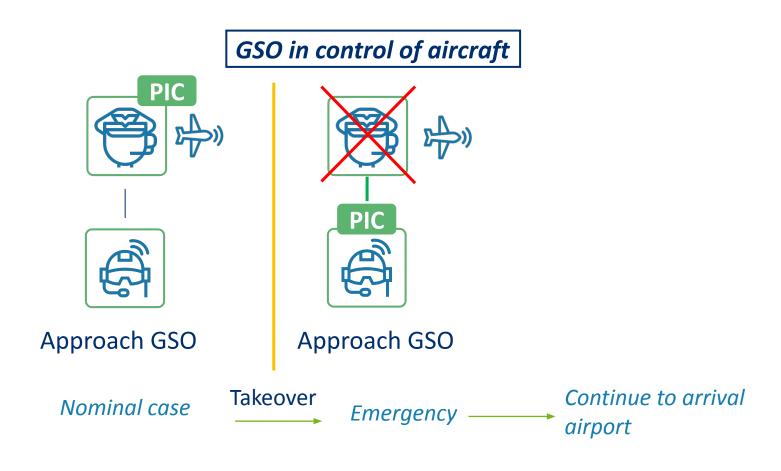
The presence of three different kinds of ground stations (GS) is assumed for SPO:

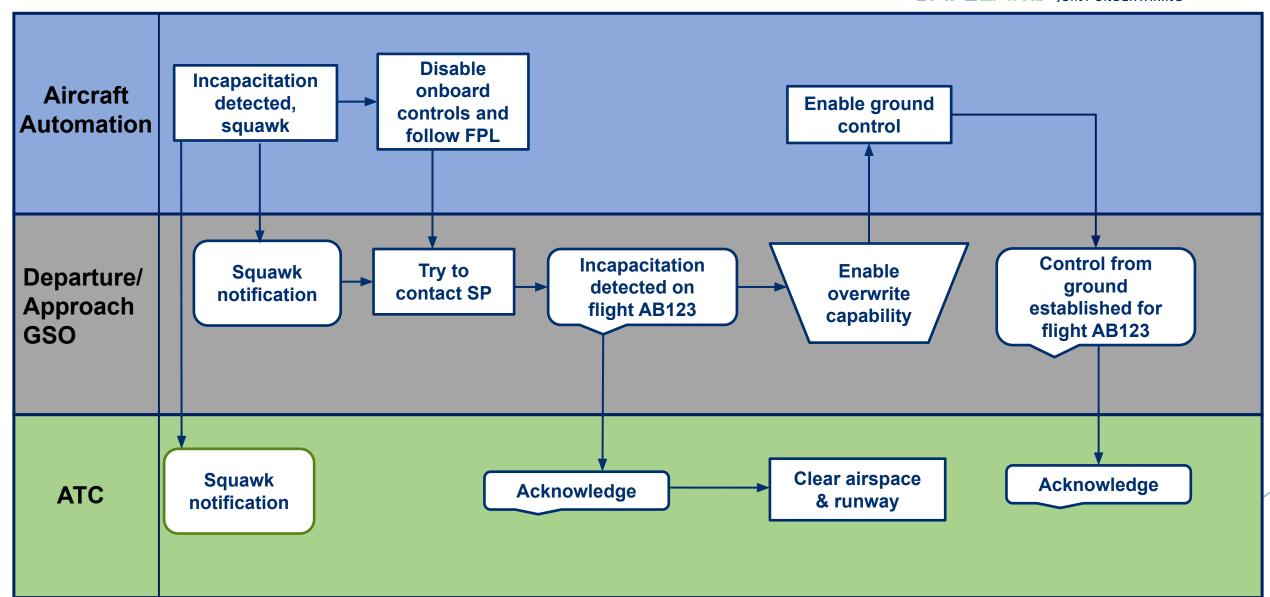
- Departure GS the GSO supports one single pilot
- Cruise GS the GSO supports multiple single-piloted aircraft simultaneously
- Approach GS the GSO supports one single pilot

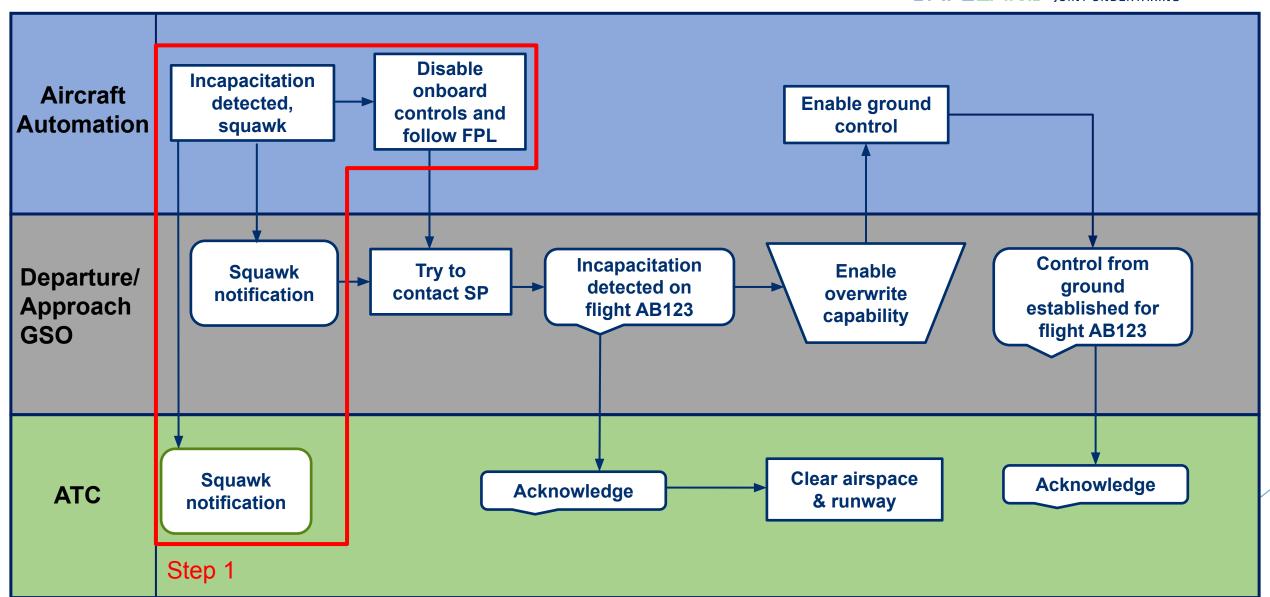
SAFELAND Concept 03-11-22

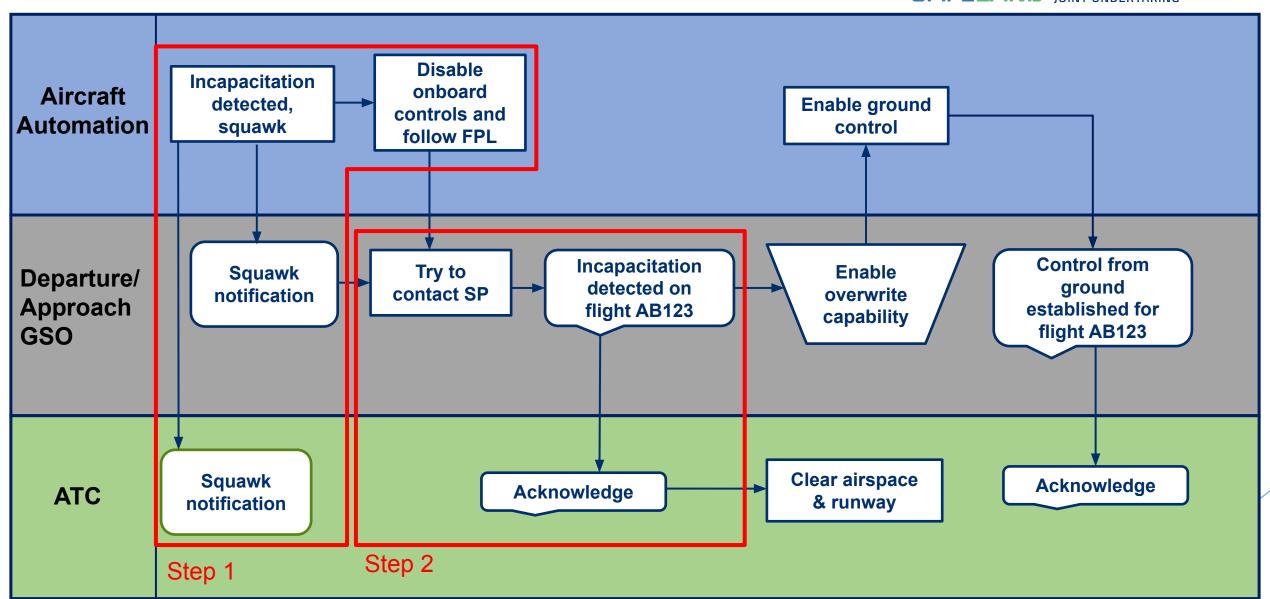
The SAFELAND Concept

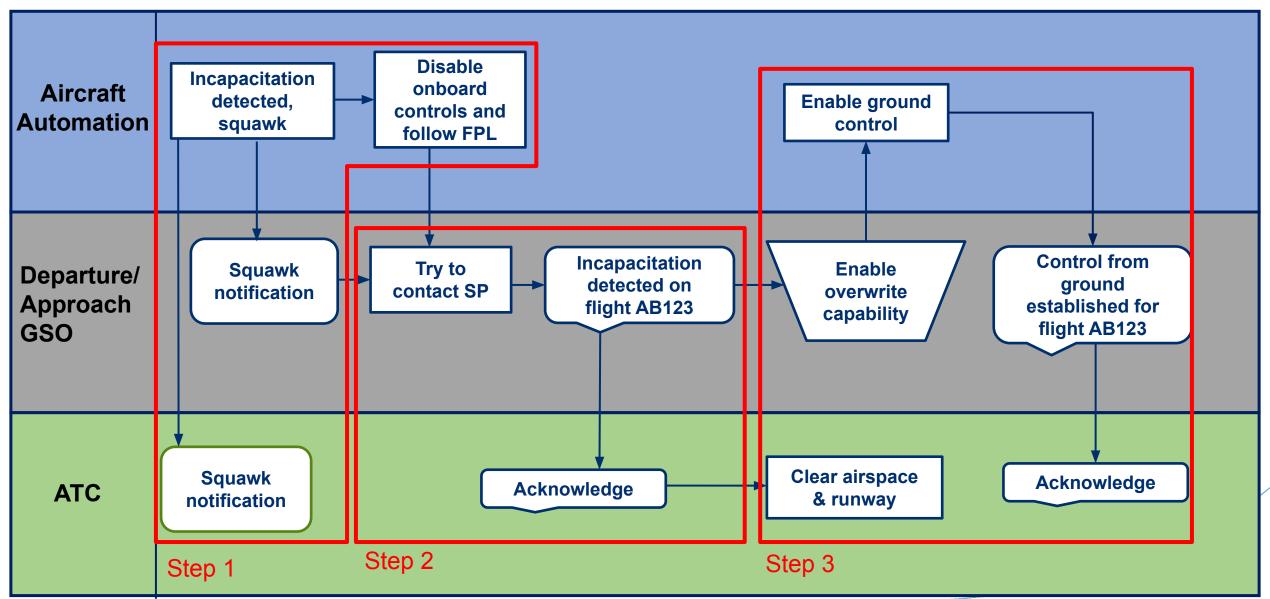
Onboard Single Pilot Incapacitation

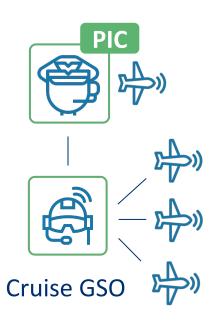

Pilot Incapacitation in TMA


Nominal case


Pilot Incapacitation in TMA

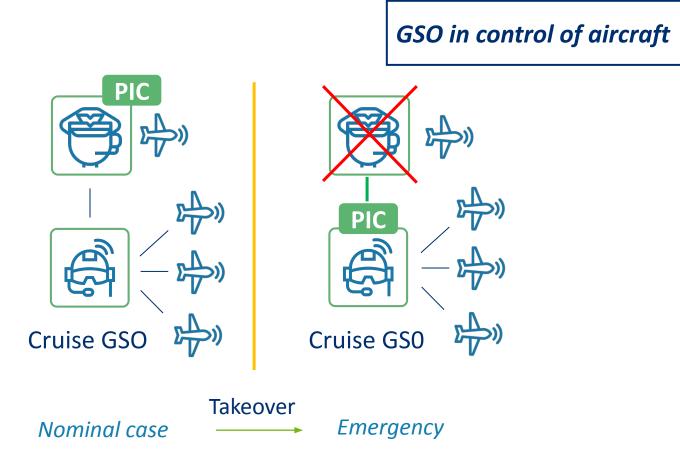






SAFELAND JOINT UNDERTAKING

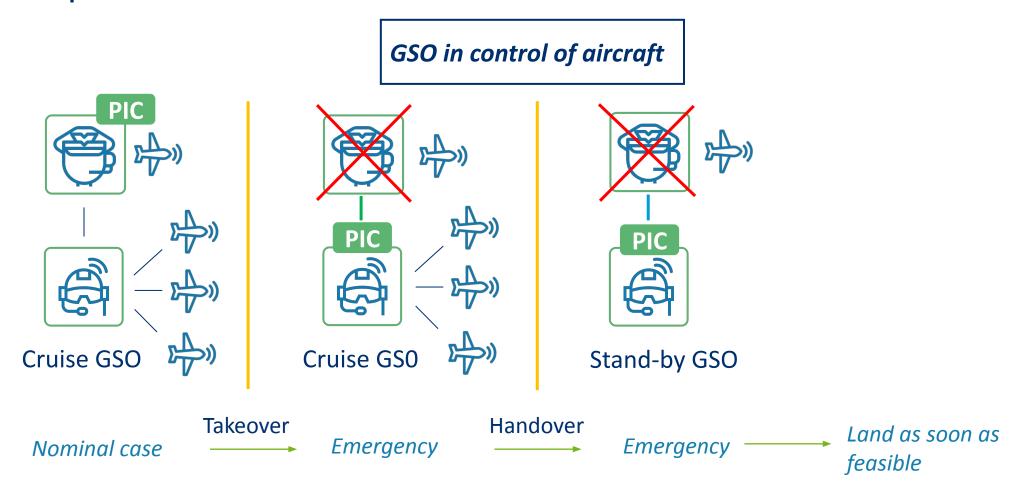
Pilot incapacitation en-route



Nominal case

SAFELAND Concept 03-11-22

Pilot incapacitation en-route



SAFELAND Concept 03-11-22

14

Pilot incapacitation en-route

SAFELAND Concept

Key Attributes

- SAFELAND concept proposes three different GSO roles (i.e., departure, cruise, approach)
- Concept relies on more sophisticated onboard automation to support the SP throughout the flight
- Handover procedures are closely aligned with current requirement for handovers of remotely piloted aircraft
- No significant changes on the tasks and responsibilities of ATC
- Remote pilot able to control multiple highly automated aircraft
- GSO is **not expected** to manually fly the aircraft

SAFELAND Evaluation

Real-time Simulations

RTS objectives

The **focus** of the RTS was on:

- Emergency Operating Procedure for pilot incapacitation (normal operations are out of scope)
- Roles and responsibilities of the different participants
- Task allocation (including between human and automation)
- Communication and Coordination between participants

RTS participants

SAFELAND JOINT UNDERTAKING

1. Pilots from SWISS -> **GSO**

2. ATCOs from LFV -> ATCOs

☐ 1 pilot + 1 ATCO each day (5 days)

Other roles

- Single Pilot
- Cruise GSO
- Other ATS units
- NOC

-> SAFELAND Consortium

Simulation scenarios

Scenario 1: TMA

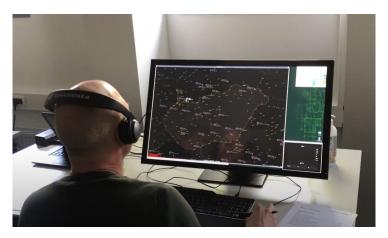
• Aircraft type: A321

- Departure Arrival:
 Zurich (LSZH) Düsseldorf (EDDL)
- Flight Phase:
 About to enter TMA (FL120)
- Surrounding traffic:
 - Air traffic constructed based on recorded traffic at EDDL from 2019
 - 35 arrivals per hour

Scenario 2: En-route

- Aircraft type: A321
- Departure Arrival:
 Zurich (LSZH) Kiev (UKKB)
- Flight Phase: About to enter a new sector in Hungarian airspace (FL330)
- Surrounding traffic:
 - Air traffic extracted from EUROCONTROL's DDR2 traffic data
 - Air traffic day recorded on 29.06.2019

Roles in RTS – TMA (Run 1)



Skynet SW

Controller Working Position

- APP ATCO
- Other ATS units

GSO (U-FLY)

U-FLY SW

Ground Station Position

Approach GSO

X-plane

Cockpit simulator

On-board Single Pilot

Roles in RTS – En-route (Run 2)

Skynet SW

Controller Working Position

- ACC ATCO
- Other ATS units

GSO (U-FLY)

U-FLY SW

Ground Station Position

- Cruise GSO
- Stand-by GSO

SP (iSIM)

X-plane

Cockpit simulator

On-board Single Pilot

Operator Room

Network Operator

21

Supporting material

SAFELAND RTS - GSO Checklist

- **Training session** for GSO and ATCO
- Simplified **Checklist** for all participants
- **Instruction** for all participants
- **Script** for roles simulated by SAFELAND participants

Run 2 - Pilot Incapacit, during CRUISE grey cell means: not listening to the ACC ATCO (CWP) Cruise GSO (U-FLY1) Thomas/Matthias (DLR) Andreas Triska (SWISS) Participant No 2 (LVF) Participant No 1 (SWISS) Joonas (DLF FL320: heading West -> East: Monitoring 4 a/c simultaneously, all sharing the On stand-by to support other GSO, including receiving Responsible for Hungarian airspace before entering Hungarian same ATC frequency an a/c in case of emergency. Airspace (1-2 min) STATE "YOU HAVE CONTROL OF SWR1026"..... Budapest Center, SWISS 1026, (listens in to exchange between SP and ATC) 1 scenario starts with a/c FL320 inbound PESAT, hello! airspace and contacting SWISS 1026, identified. Good day! Cruise GSO receives the alert and the squawk receives squawk 7700, starts listening to comms receives squawk 7700 (not implemented in RTS between cruise GSO and SWISS 1026 in order to build Automation disables onboard controls and continues approach. (selects a separate line to talk exclusively to SWISS 1026 - other a/c and ATC not listening) SWISS 1026, this is your cruise ground station operator speaking: Please report your status

Run 2 – En-route

CHECKLIST - Cruise GSO

PILOT INCAPACITATION

	TRY TO CONTACT SINGLE PILOT	DONE	
	CONFIRM PILOT INCAPACITATION	DONE	
	TAKEOVER A/C CONTROL	DONE	
	(4) Go to Flight Plan widget		
	(5) Click on "Control"		In
	(6) Wait until the system gives you control		
	A/C STATE (ALT, SPD, HDG)	CHECK	
	FLIGHT PLAN/ NEXT WAYPOINT	CHECK	St
	DECLARE MAYDAY	DONE	PI
	COMMUNICATE CONTROL FROM GROUND		(e
	COMMUNICATE START OF HANDOVER PROCESS TO ATC	DOINL	ai
	REPORT READY FOR HANDOVER BRIEFING TO STBY GSO	DOME	de
	REPORT POSITION OF A/C	DONE	D
	REPORT FLIGHT LEVEL	DONE	О
٠	REPORT HEADING	DONE	۲
0,0	ACKNOWLEDGE HANDOVER TO STBY GS		
	(1) Click on "OK" for handover on the pop-up window		CC
	STATE "YOU HAVE CONTROL OF SWR1026"	DONE	

Fig. Checklist GSO

Instructions - ATCO - S02

Storvline

Please imagine you are an approach Air Traffic Controller (ATCO) in a future air traffic scenario (e.g. year 2030+) for Düsseldorf airport (EDDL). In this scenario some aircraft are single piloted aircraft, some are two piloted aircraft but none are unmanned aircraft vehicles. You monitor control and handle all aircraft the same way and you control your approach sector as you would do it in today's operations (cf. Your tasks below). Approximately 35 flights per hour will land at Düsseldorf airport (EDDL) in the developed scenario.

Objective

The objective of this real-time simulation exercise is for you to experience the SAFELAND concept for handling pilot incapacitation in future single pilot operations.

Your tasks

- Monitor, control and handle all aircraft on your radar screen
- Manage your sector as you would do it in today's operation
- Coordinate and communicate your actions with the PIC (as today)
- React to the simulated situation as you would react in today's operations

The scenario will take about 15-20min. Afterwards you will be asked to fill in a questionnaire and participate in debriefings and discussions.

Thank you for your participation!

Fig. Instructions ATCO S02

Assumptions

- All systems operating as expected
- No delay (in C2 link or communication)
- Onboard pilot health monitoring system capable of detecting incapacitation and automatically alerting the GSO and ATCO
- Surrounding traffic is datalink-equipped (no pseudo-pilots or read backs)
- ATC provides clearances via voice only to EMERG A/C
- After incapacitation, autopilot engaged automatically (i.e. a/c flies according to last FMS entry)
- Manual control from ground not foreseen (i.e. only high-level commands from ground to a/c, such as HDG, SPEED, ALT)
- Advanced Landing System is engaged during arrival (TMA run)
 - If not given any further inputs, a/c lands according to the last FMS entry
 - Secondary flight controls and the landing gear are operated automatically

Roles & Responsibilities

Onboard Single Pilot

Responsibilities: Pilot in Command (PIC), responsible for flight safety and thus main decision-maker.

ATCO

Responsibilities: Ensures air traffic operation and management. Responsibilities are not expected to change compared to current operations.

Approach GSO - Run 1

Responsibilities: Support the PIC, contributing to a safe and efficient flight. Act as PIC after SP becomes incapacitated.

Cruise GSO – Run 2

Responsibilities: Support several single pilots, contributing to a safe and efficient flight. Act as PIC after SP becomes incapacitated until a/c is transferred to stand-by GSO.

Stand-by GSO – Run 2

Responsibilities: Become PIC after pilot incapacitation, responsible for flight safety and thus decision maker.

GSO Tasks during Approach/Departure

Tasks before incapacitation

- Departure/Approach Briefings with SP
- Monitor aircraft systems and flight (e.g., trajectory conformance)
- Monitor pilot's health (with support from pilot health monitoring system)
- Check (and inform the pilot) of potential hazardous weather in the airport vicinity
- Support the PIC upon request
- Cross-check and monitor SP actions
- Listen to communications between SP and ATC

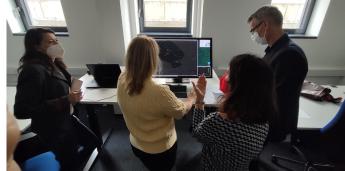
SAFELAND Concept 03-11-22 2

GSO Tasks during Approach/Departure

Tasks before incapacitation

Tasks after incapacitation

- Departure/Approach Briefings with SP
- Monitor aircraft systems and flight (e.g., trajectory conformance)
- Monitor pilot's health (with support from pilot health monitoring system)
- Check (and inform the pilot) of potential hazardous weather in the airport vicinity
- Support the PIC upon request
- Cross-check and monitor SP actions
- Listen to communications between SP and ATC


- Contact a/c and confirm pilot incapacitation
- Take over control of the aircraft, check a/c state
- Declare MAYDAY
- Communicate control from ground
- Manage flight via high-level commands (HEAD, ALT, SPEED) or FPL changes
- Coordinate with ATC for emergency landing

SAFELAND Concept 03-11-22 2

Impressions

SAFELAND Results

Simulation Findings

SAFELAND RTS data gathering

Observations

Final Debriefing

Questionnaires

SAFELAND RTS data

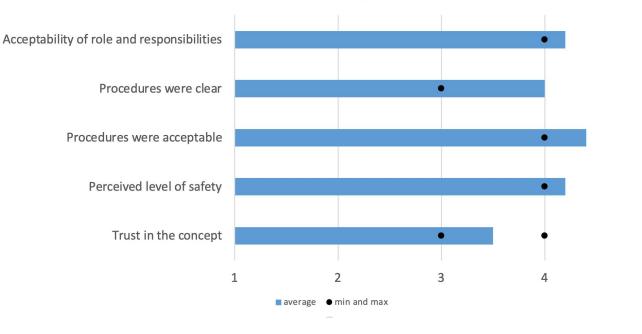
Roles and responsibilities

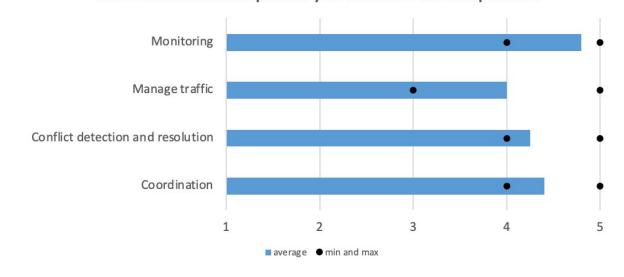
Procedures

Coordination and communication

Systems and HMI

Human Performance and Safety





Acceptability, operating methods, safety and trust - ATCO

ATCO. Roles, responsibilities, operating methods, safety and trust.

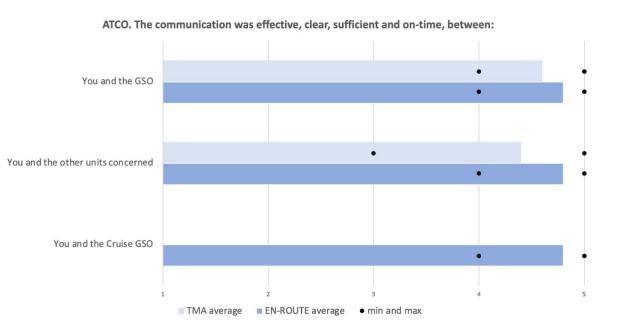
ATCO. You were able to perform your tasks as in current operations

SAFELAND changes and challenges: ATCOs

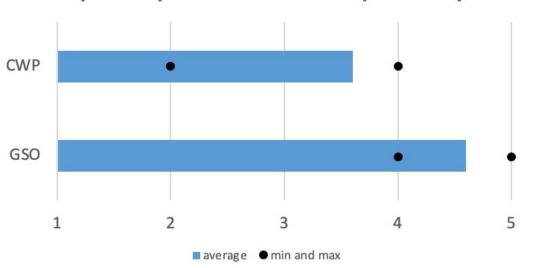
NO big changes in ATCOs' tasks, procedures and responsibilities compared to current emergency operations.

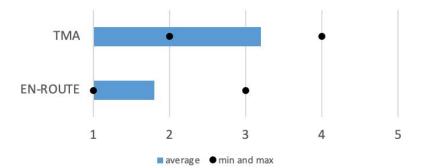
After incapacitation, the ATCO:

- clears the airspace
- coordinates with any other ATC services/concerned units as needed
- supports the GSO as needed



SAFELAND RTS Results




Communication, workload, and situational awareness - ATCOs

ATCO. You had all the information you needed to perform your tasks. Information provided by:

ATCO. Overall workload level

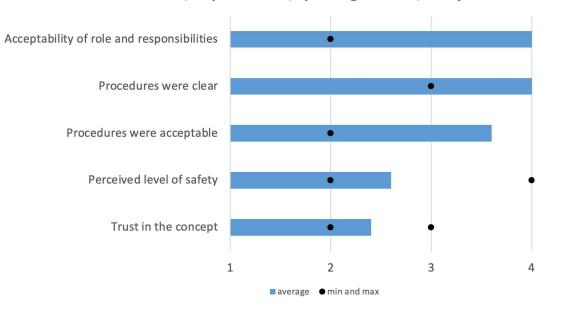
SAFELAND RTS Results

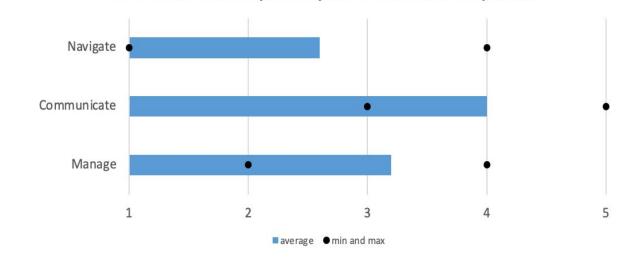
Additional Tools /improvements - CWP

- Different labels for SP aircraft
- Specific squawk indicating single pilot incapacitation
- System capable of automatically sending operational information (e.g., remaining fuel, number of people on-board) from the aircraft to the CWP.

SAFELAND changes and challenges: pilots

- New role
 On-board pilot → remote pilot (GSO)
 Two-pilot crew → single remote pilot
- New environmentCockpit → Ground Station
- 3. New procedures
- Assumptions (e.g., technology, no delay...)

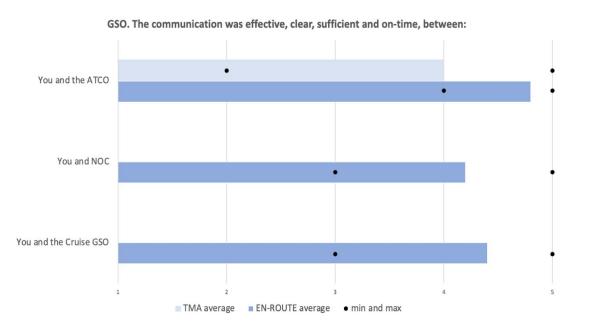

SAFELAND RTS Results

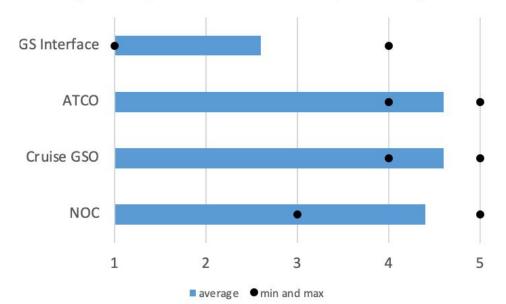


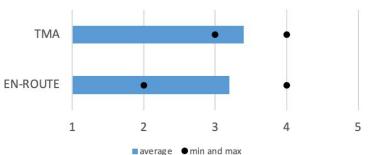
Acceptability, operating methods, safety and trust - GSOs

GSO. Roles, responsibilities, operating methods, safety and trust.

GSO. You were able to perform your tasks as in current operations






Communication, workload, and situational awareness - GSOs

Main challenges - GSOs

GS environment
Limitations imposed by design (no manual control)
Information displayed on the GS
Usability of the HMI

GSO role
Alone in handling the emergency

Safety and security issues (e.g., other possible failures, cyber-intrusion)

Performance
Technical system and HMI
Situational awareness
Task allocation

Main challenges - GSOs

GS environment
Limitations imposed by design (no manual control)
Information displayed on the GS
Usability of the HMI

GSO role
Alone in handling the emergency

Safety and security issues (e.g., other possible failures, cyber-intrusion)

Main challenges - GSOs

GS environment
Limitations imposed by design (no manual control)
Information displayed on the GS
Usability of the HMI

GSO role Alone in handling the emergency

Safety and security issues (e.g., other possible failures, cyber-intrusion)

SAFELAND Key results

ATCO role, responsibilities and procedures did not change much very positive evaluation

Pilots faced many changes (in their role, environment, procedures) and challenges (SPO and related technologies not implemented yet).

positive evaluation of operating procedures, dynamic of interactions between team members, coordination and communication flow

<u>however</u>, feasibility acceptability and trust would depend on future technological implementations, and on reliability and redundancy of the systems in place.

SAFELAND Next steps

Next research steps to build a framework around the SAFELAND concept, and make the concept itself more robust

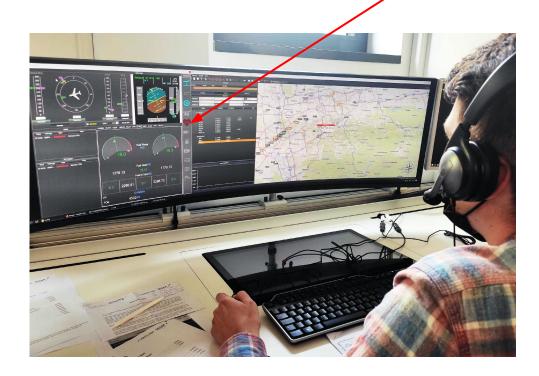
- the development of a definitive SPO CONOPS;
- the key technological enablers (airborne, ground side and communication) needed to support SPO preserving the same safety levels of current operations;
- **integration** and validation of the different architectural and functional components in following maturity phases to uncover procedural gaps/emerging system properties/ safety issues/ potential barriers.

Open points of discussion:

SAFELAND JOINT UNDERTAKING

What should be the competences of a GSO?

Both pilot and ATCO participants agreed that, to ensure a high level of safety, the GSO knowledge, skills and operational experience should be similar to those required for a pilot + specific training to operate remotely from the GS + well trained monitoring skills.


43

Open points of discussion:

Pilot Health Monitoring system

Requirement:

More information on on-board pilot health status

Possible issues:

System failure (Late/or no detection/false positives)
Subtle incapacitation

Possible mitigations:

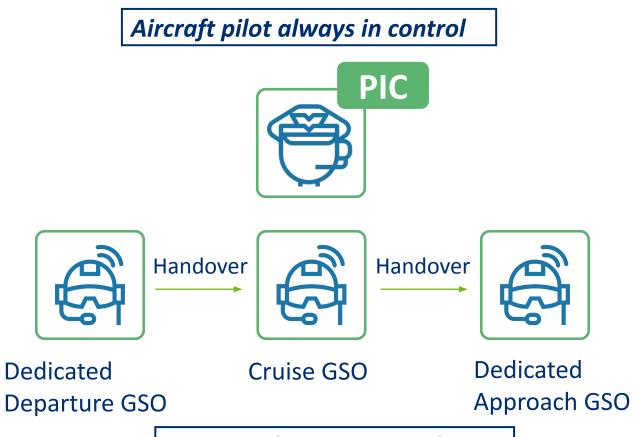
Camera inside the cockpit
Shared audio environment
Precursors of incapacitation (WL, stress, fatigue) &
physio/neuro-physio measurements
Combination with rule-based behaviors and interaction
with cabin crew

THANK YOU FOR YOUR ATTENTION

Open points of discussion:

Ethical and legal (privacy) issues of the PHM system

Would a system collecting and transferring pilots health data and performance be acceptable?


Would a camera inside the cockpit be acceptable?

46

Nominal Operational Concept

Simplified operational concept for SPO

GSO mostly monitoring duties

SAFELAND Concept 03-11-22 47

SAFELAND Next steps

Other open points are:

- Incapacitation detection (failure, false positive, partial incapacitation)
- Transition period from nominal SPO case (on-board pilot in control) and incapacitation confirmation
- Additional use cases (other system failures, latency communications)
- Role of the cabin crew
- Ground station (physical architecture, technical challenges, manpower & personnel, training needed, GS HMI)
- Social and ethical aspects (trust and confidence, acceptability)

SAFELAND Overview


The Topic (Exploratory Research)

Single pilot operations

The SAFELAND Project contribution

 Enhancing safety in case of single pilot incapacitation, until landing

Initial concept definition

Preliminary Evaluation Final concept definition

Low Fidelity evaluation

Final validation platform preparation

HITL Simulation

Safety & Sec. Assessment

Legal, Certification, Costs

Diss. & Expl.

Dec. 2022

July 2020