

UAS automation, autonomy and the missing ring

How to certify highly complex systems in a highly complex environment

Giovanni Di Antonio JARUS Chair

Rome, 3 November 2022

AAM is coming

(source: internet)

REGULATION

[The missing ring]

In manufactured and and a

(source: internet)

Automation vs Autonomy

 Automation – The use of machines or computers instead of people to perform a task

 Autonomy – The characteristic of a system having the ability and authority of decision making, problem-solving, and/or self-governance under possibly bounded, variable, or abnormal conditions

Embedding Al technology may be easy

Exploitation not easy without a favorable environment

"Reliable Al ecosystem"

(Prof. Maria Rosaria Taddeo - Cambridge University)

WG AUTOMATION

WG AIRWORTHINESS

Automation and Autonomy CONOPS

For integration of

- Automated Aircraft Systems (UAS flight ops)
- Automated Airspace Systems (traffic management, aerodromes, etc.)

within aviation regulatory frameworks including challenges with existing regulatory structures and opportunities for future regulatory development

JARUS methodology for evaluating autonomy of UAS ops

Self-Driving

Levels of Automation Safety dependence of automated functions Trustworthiness of automated functions

: internet)

	UAS Automation Levels in Flight Operations					
	Level 0	Level 1	Level 2	Level 3	Level 4	Level 5
Level Functions	Manual Operation	Assisted Operation	Task Reduction	Supervised Automation	High Automation	Full Autonomy
Human-Machine Teaming	Human Ied	Human- In-the- Ioop	Human-In- the-loop	Human- In/On-the- Ioop	Human-On- the-loop	Human-Off- the-loop
Sustained Aircraft Maneuver Control	Human	Human <i>AND</i> Machine	Machine (Managed by Human)	Machine (Supervised by Human)	Machine	Machine
Object and Event Detection and Response (OEDR)	Human	Human	Machine (Managed by Human)	Machine (Supervised by Human)	Machine	Machine
Fallback (Integrity Thresholds Exceeded)	Human	Human	Human	Human	Fall back Ready Human	Machine (Limited or Segregated Operations)
Communication with External Systems (Ground and Airspace systems)	Human	Human	Human <i>OR</i> Machine (Managed by Human)	Machine (Supervised by Human)	Machine	Machine

Fully autonomous UAS could operate in an airsapce environment with a lesser level of autonomy

(human in/on the loop as ultimate safety layer)

UAS performance-based certification requirements

Performance-Based Airworthiness Requirements for UAS which contain functions performed by High Complex Systems (HCS) including AI

- Machine Learning
- Symbolic Al
- Numerical analysis

{OE} \ {ODD} covered by other systems

 ${OE} \cap {ODD}$ covered by HCS

Objective Requirements

Trustworthy AI

- Lawful
- Ethical
- Safe & secure
- Explainable

[Ref. EU Ethic Guidelines for Thrustworthy AI]

Monitoring levels

- HCS output
- Superordinate systems that make use of HCS output

• UAS

(source: i

Learning in operations (ML)

Offline

 Online – during ops (adaptive behaviour)

Design change to be (re)certified, unless otherwise foreseen

(cource internet)

Conclusions

- JARUS is developing performance-based requirements and recommendations for autonomous UAS operations in autonomous airspace environment making use of AI, unlocking the possibility for Authorities to authorize operations
- Detailed standards can be developed in compliance with the performance-based requirements to allow high TRL projects in order to prof actual system in operational environment
- To support this process the Authorities (incl. ENAC, the Italian CAA) are developing Regulatory Sandbox approaches

First Italian Veritport at Fiumicino Airport – Rome

Thank you for attention

http://jarus-rpas.org/

contact@jarus-rpas.org